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Transport of turbulent vorticity increments
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Starting with the Navier-Stokes equations, a transport equation is written for the sum of the squared vorticity
increments in homogeneous isotropic turbulence. This equation is compared with that for the sum of the
squared velocity increments; whereas the latter equation exhibits a linear dependence on separation, the former
does not. In the limit of a negligibly small separation, the new equation expresses a balance between the
production and dissipation of the mean square vorticity gradient. All terms in the equation have been measured
using a three-component vorticity probe in the self-preserving region of a low Reynolds number turbulent
wake.@S1063-651X~98!10904-2#

PACS number~s!: 47.27.Gs, 47.27.Nz, 47.27.Vf
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I. INTRODUCTION

An important equation in the context of isotropic turb
lence is that written by Kolmogorov@1# using the Ka´rmán-
Howarth equation@2# as a point of departure. This equatio
describes the transport of (du1)2, where du1[u1(x11r 1)
2u1(x1) is the longitudinal velocity increment~x1 and r 1

represent the longitudinal coordinate and separation, res
tively! and has received reasonably good experimental s
port. Recently, the equation for (du1)2 was generalized@3#
to an equation for (dui)

2, with repeated subscripts implyin
summation. We inquire here into the form of the equat
that describes the transport of (dv i)

2, wherev i is the vor-
ticity fluctuation. Information on the vorticity field is desir
able for a number of reasons, not the least of which is
connection between the internal dynamics of turbulence
the self-amplifying characteristic of vorticity@4,5#. While the
characteristics of the velocity increment have been ex
sively studied, especially in connection with the effect
small scale intermittency, little is known about the statist
s
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of (dv i)
2 or just one of its components. The derivation

the equation fordv i
2 is presented in Sec. II; both the equ

tion and its limiting form ~when r 1→0! are discussed by
comparison to the (dui)

2 equation. Measurements of a
three components of the fluctuatingv i vorticity vector were
made in a turbulent wake with a new vorticity probe@6#.
Details of the experiment are given in Sec. III. Results
moments of̂ (dv i)

2& and for all the terms in the transpo
equation for (dv i)

2 are presented in Sec. IV.

II. TRANSPORT EQUATION FOR „dv I …
2

The transport equation for the instantaneous vortic
fluctuationv i at pointxi may be written as@7,8#

] tv i1ua]av i5va]aui1n]a
2v i , ~1!

where the notation is such that] t[]/]t, ]a[]/]xa , and
]a

2[]2/]xa
2. By subtracting Eq.~1! from the corresponding

vorticity equation at pointxi
1[xi1r i , the difference is
~2!
wheredv i([v i
12v i) is the vorticity increment,dui([ui

1

2ui) is the velocity increment, and the superscript ‘‘1’’
refers to quantities atxi

1 . We used the fact that coordinate
xi and xi

1 are independent, i.e.,]( )1/]xa[0 and
]( )/]xa

1[0. After multiplying Eq.~2! by 2dv i and averag-
ing ~angular brackets denote ensemble averaging!, terms 1–5
in Eq. ~2! become

2^dv i] t~dv i !&5] t^~dv i !
2&, ~3a!

2^dv idua]a
1~dv i !&5

]

]r a
^dua~dv i !

2&, ~3b!
2^dv iua~]a
11]a!dv i&5]a

1^ua~dv i !
2&1]a^ua~dv i !

2&,
~3c!

2^dv iva
1]a

1~dui !&12^dv iva]a~dui !&

54^v iva]aui&22
]

]r a
^v iva

1ui
1&

12
]

]r a
^v i

1vaui&, ~3d!
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2n^dv i]a
12

~dv i !&12n^dv i]a
2~dv i !&

5n^]a
12

~dv i !
2&1n^]a

2~dv i !
2&22n^@]a

1~dv i !#
2&

22n^@]a~dv i !#
2&

52n
]2

]r a
2 ^~dv i !

2&24^ev&. ~3e!

Equation ~3c! is zero since, due to the definitionr i[xi
1

2xi ,

]a
1^ &[

]

]r a
^ & and ]a^ &[2

]

]r a
^ &.

In Eq. ~3e!, ^ev&[n^(]av i)
2& is the destruction rate o

the mean square vorticity. For stationary turbulence at a
ficiently large Reynolds number@9#

^v iva]aui&5^ev&, ~4!

viz. ^ev& balances the generation of^v i
2& due to the interac-

tion between the instantaneous turbulent strain rate and
ticity fluctuations. After combining Eqs.~3a!–~3e!, the re-
sulting equation is

]

]t
^~dv i !

2&1
]

]r a
^dua~dv i !

2&24^v iva]aui&

22n
]2

]r a
2 ^~dv i !

2&12
]

]r a
^v iva

1ui
12v i

1vaui&

14^ev&50. ~5!

An order of magnitude argument suggests that the first t
of Eq. ~5! should be negligible when the Reynolds numbe
sufficiently large. With this term ignored, and making use
Eq. ~4!, Eq. ~5! can be simplified to

]

]r a
^dua~dv i !

2&22n
]2

]r a
2 ^~dv i !

2&

522
]

]r a
^v iva

1ui
12v i

1vaui&. ~6!

Only homogeneity has been used to obtain Eq.~6!. If isot-
ropy is introduced, Eq.~6! can be projected onto thex1 di-
rection, viz.,

S 2

r 1
1

]

]r 1
D ^du1~dv i !

2&22nS 2

r 1
1

]

]r 1
D ]

]r 1
^~dv i !

2&

522S 2

r 1
1

]

]r 1
D ^v iv1

1ui
12v i

1v1ui&. ~7!

Using an argument similar to that by Ka´rmán and Howarth
@2# ~see also@8#! the only solution of the equation

S 2

r 1
1

]

]r 1
D f ~r 1!50,

which has no singularity atr 150, is f (r 1)50. The solution
of Eq. ~7! is therefore given by
f-

r-

m
s
f

^du1~dv i !
2&22n

]

]r 1
^~dv i !

2&522^v iv1
1ui

12v i
1v1ui&.

~8!

This equation differs in an important way from the transpo
equation for̂ (dui)

2& @3#,

^du1~dui !
2&22n

]

]r 1
^~dui !

2&52 4
3 ^e&r 1 , ~9!

where ^e& is the average turbulent energy dissipation ra
Whereaŝ du1(dui)

2& increases linearly withr 1 in the iner-
tial range~IR!, ^du1(dv i)

2& is likely to decrease over this
region if the two-point correlations on the right of Eq.~8!
become negligible. Such a behavior would be qualitativ
consistent with the observation by Antoniaet al. @10# that
two-point vorticity correlations should decrease asr 1

24/3 in
the IR. These authors noted@10# that ^(dv i)

2& is unlikely to
exhibit a power-law behavior in the IR: Fan@11# also noted
the absence of a power-law behavior in the spectrum ofv1 .
The absence of a dependence onr 1 , over the IR, for
^du1(dv i)

2& would contrast with the existence of such
behavior for two-dimensional turbulence@12,13#.

The limiting behavior of Eq.~8! when r 1→0 can be in-
ferred from a Taylor series expansion of Eq.~8! aboutr 150.
Retaining terms up to orderr 1

3, the left side of Eq.~8! re-
duces to

^du1~dv i !
2&.^]1u1~]1v i !

2&r 1
3 ~10a!

and

22n
]

]r 1
^~dv i !

2&.24n^~]1v i !
2&r 122n^~]1

2v i !
2&r 1

3

2
8n

3
^]1v i]1

3v i&r 1
3. ~10b!

The term on the right of Eq.~8! can be rewritten as follows:

22^v iv1
1ui

12v i
1v1ui&52^~v i

12v i
2!uiv1& ~11!

since

^v iui
1v1

1&5^v i
2uiv1&

by virtue of homogeneity~the superscript ‘‘2’’ refers to lo-
cation x12r 1!. Using Taylor series expansions forv i

1 and
v i

2 aboutr 150, we can show that, to orderr 1
3,

2^~v i
12v i

2!uiv1&.4^uiv1]1v i&r 11 2
3 ^uiv1]1

3v i&r 1
3.
~12!

Using homogeneity and the isotropic form of the fourt
order tensor̂uic j] lvk&, it can be shown that~see Appendix!

2^uiv1]1v i&5^v iv1]1ui&. ~13!

Further, Eq.~4! and the isotropic form of̂] jv i] lvk& allow
the right side of Eq.~13! to be written as

^v iv1]1ui&5n^~]1v i !
2&. ~14!
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As a consequence of Eqs.~13! and ~14!, the r 1 term in Eq.
~12! cancels ther 1 term in relation~10b!. This leaves bal-
ance~in the limit r 1→0! between ther 1

3 terms in relations
~10a!, ~10b!, and~12!, viz.,

^]1u1~]1v i !
2&22n^~]1

2v i !
2&2

8n

3
^]1v i]1

3v i&

5
2

3
^uiv1]1

3v i&. ~15!

The viscous terms can be combined since

^]1v i]1
3v i&52^~]1

2v i !
2&,

because of homogeneity. Equation~15! becomes

2
3 n^~]1

2v i !
2&5 2

3 ^uiv1]1
3v i&2^]1u1~]1v i !

2&. ~16!

The limiting form ~when r 1→0! of Eq. ~9! is

2
3 n^~]1

2ui !
2&52^~]1u1!~]1ui !

2&. ~17!

While Eq. ~17! expresses a balance between production
dissipation of the mean square vorticity in isotropic turb
lence, Eq.~16! can be interpreted as representing the equa
between the generation and destruction of the mean sq
vorticity gradient, also for isotropic turbulence. Equati
~17! has been written, e.g.,@14#, in terms ofu1 .

III. EXPERIMENTAL DETAILS

The three components ofv i were measured simulta
neously with a vorticity probe comprising fourX wires ~i.e.,
a total of eight hot wires: a sketch of this probe was given
Zhu and Antonia@6#!. Two X wires are in thex1-x2 plane
and are separated by a distance in thex3 direction of 2.8 mm.
The other two are in thex1-x3 plane with a separation in th
x2 direction of 2.5 mm. The lateral separation between
clined wires in eachX probe was about 1 mm. The include
angle for eachX wire was about 100°. The 2.5mm diameter
wires were operated at an overheat ratio of 0.5 in cons
temperature circuits. Output voltages from the circuits w
passed through buck and gain circuits and low-pass filte
at a cutoff frequency of 800 Hz. Sampling was carried ou
a frequency of 2000 Hz using a 12-bit analog to digital co
verter. The record duration was about 120 sec.

Measurements were made on the center line of the w
generated by a circular cylinder~diameterd56.35 mm! at a
distance of 240d downstream of the cylinder. With a fre
stream velocityU1 of 3.6 m/s, the wake half-width at th
measurement location was 26 mm. The Reynolds numbeRl

based on the longitudinal Taylor microscalel
5^u1

2&1/2/^u1,1
2 &1/2 was equal to 40 and the Kolmogoro

length scaleh5n3/4/^e iso&
1/4 was 0.64 mm~note that the

characteristicx2 or x3 dimension of the probe is about 4h!.
The full value of^e&, which includes 12 components, can
inferred from the velocity derivatives that are measured w
the probe. This value, which was 7% smaller than^e& iso

515n^u1,1
2 &, was used for estimatingh.

The flow choice was dictated partly by the need to have
large a value ofh as possible~this can be realized in the
d
-
y
re

n

-

nt
e
d
t
-

ke

h

s

self-preserving region of a wake at least at small Reyno
numbers! and partly because the small turbulence intens
level in the wake~,3% on the centre line!. The latter factor
should allow the use of Taylor’s hypothesis. This hypothe
was used for converting temporal increments~of ui or v1!
into spatial increments or temporal correlations into spa
correlations.

IV. RESULTS

Equation~8! can be nondimensionalized by multiplicatio
with h2/UK

3 , viz.,

~18!

where the asterisk denotes normalization by the Kolmogo
scalesh and/orUK . All terms in Eq.~18! have been mea
sured over the range 3&r 1* &50.

Distributions of^(dv i* )2& and its components are show
in Fig. 1. Note that̂ (dv2* )2& and ^(dv3* )2& are approxi-
mately equal and become constant at a smaller value
r 1* (.15) than^(dv1* )2&. The approximate equality of the
variances of the transverse vorticity increments is consis
with local isotropy. It follows from the solenoidality ofv i

that ^(dv2* )2& @or ^(dv3* )2&# is related to^(dv1* )2& in the
same way aŝ(du2* )2& @or ^(du3* )2&# is related tô (du1* )2&,
viz.,

^~dv2* !2&5^~dv3* !2&5S 11
r 1*

2

]

]r 1*
D ^~dv1* !2& ~19!

when local isotropy is assumed. The values of^(dv2* )2& or
^(dv3* )2& calculated with Eq.~19! exceed the measured va
ues at smallr 1* (&8). It is unlikely that this disagreemen
reflects a departure from local isotropy; it is more likely to
due to the imperfect spatial resolution of the probe. The

FIG. 1. Second-order moments of vorticity increments in a s
preserving wake.s: ^(dv1* )2&; h: ^(dv2* )2&; ,: ^(dv3* )2&; d:
^(dv i* )2&. —: calculation of̂ (dv2* )2& or ^(dv3* )2& using Eq.~19!.
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tenuation at smallr 1* ~or high wave numbers! is significant
and is more important forv2 ~or v3! thanv1 @15#. No cor-
rections were applied here for this attenuation. The mag
tude of ^(dv i* )2& attains a constant value of about 1.5
r 1* .20. This constancy reflects the small scale nature of v
ticity and the relatively rapid decline of the magnitude of t
correlation ^v i(x1)v i(x11r 1)& as r 1 increases. When this
correlation becomes negligible,

^~dv i !
2&52^v i

2&. ~20!

In homogeneous turbulence,

^v i
2&5

^e&
n

. ~21!

Multiplying Eq. ~20! by h2/UK
2 and using Eq.~21! leads to

^(dv i* )2&52. The measured~constant! value of ^(dv i* )2&
(r 1* *20) is 25% smaller. This difference reflects the fa
that Eq. ~21! is only approximately satisfied and possib
also the need to correct for the imperfect spatial resolution
the vorticity probe whenr 1*→` ~or infinitely small wave
numbers!. It is of interest to compare ther 1* dependence o
^(dv i)

2& with the more established behavior of the veloc
structure functions. A comparison is shown in Fig. 2 betwe
^(dv3* )2& and ^(du1* )2&; also included in the figure are th
measured values of̂(du1* )3&. Although the present Rey
nolds number is too small for an inertial range to occur,
increased magnitudes of^(du1* )2& and^(du1* )3& in the range
10&r 1* &30 seem consistent with the expectedr 1*

2/3 and r 1*
behaviors for these quantities in the range 10&r 1* &30. It is
evident, however, that the measured values lie well be
the generally accepted value of 2r 1*

2/3 for ^(du1* )2& and the
theoretical~isotropic! value of 4r 1* /5 for ^(du1* )3&. The con-
stancy of^(dv3* )2& for r 1* *15 contrasts markedly with th
behavior of^(du1* )2& and ^(du1* )3&.

The distribution of termI in Eq. ~18! is shown in Fig. 3;
also shown are the three components of this te
^du1* (dv1* )2& is negative and peaks atr 1* .20;
^du1* (dv2* )2& and ^du1* (dv3* )2& are positive with a peak
value nearr 1* .10. The sum of the three components~filled

FIG. 2. Comparison of second-order moments of spanwise
ticity increment with second- and third-order moments of the lo
gitudinal velocity increment.,: ^(dv3* )2&; s: ^(du1* )2&; h:
^(du1* )3&; : ^(du1* )2&52r 1*

2/3; : ^(du1* )3&54r 1* /5.
i-
t
r-

t

f

n

e

w

.

in circles! has a main peak atr 1* .10 and a smaller second
ary peak nearr 1* .35. The values of̂du1* (dv i* )2& in Fig. 3
are based on a particularu1 signal, obtained from one of the
four X wires which make up the vorticity probe; the figu
shows that the choice of anotheru1 signal~filled in squares!
has only a minor effect on the distribution, especially
small r 1* .

The variation of term III in Eq.~18! and its components is
shown in Fig. 4. A possible physical meaning of this term
given by Novikov@4# who identifies it with the self-induced
generation of vorticity correlations due to combined conv
tion and stretching effects. The difference^v i* v1*

1ui*
1

2v i*
1v1* ui* & is of opposite sign fori 51 than for eitheri

52 or 3 at small values ofr 1* . The latter two distributions
follow each other closely. The sum of the three differenc
~filled in circles! exhibits a positive peak atr 1* 55 and a
smaller negative peak atr 1* .20. Note that a totally different
choice ofu1 , u2 , andu3 signals~solid squares! yielded es-
sentially the same distribution for III~Fig. 4!.

The three terms in Eq.~18! are shown in Fig. 5. Term II is
of comparable magnitude to term III at smallr 1* although,

r-
-

FIG. 3. Mean values of the products of the longitudinal veloc
increment and the vorticity increments, i.e., Term I in Eq.~18!. s:
^du1* (dv1* )2&; h: ^du1* (dv2* )2&; ,: ^du1* (dv3* )2&; d:
^du1* (dv i* )2&. The solid squares denote values of^du1* (dv i* )2&
obtained for a different choice ofu1 .

FIG. 4. Velocity-vorticity two-point correlations featured i
term III of Eq. ~18!. s: ^v1*

1v1u1* 2v1v1*
1u1*

1&; h:
^v2*

1v1u2* 2v2* v1*
1u2*

2&; ,: ^v3*
1v1u3* 2v3* v1*

1u3*
1&; d:

2^v i*
1v1* ui* 2v i* v1*

1ui*
1&. The solid squares represent values

2^v i*
1v1* ui* 2v i* v1*

1ui*
1& obtained for a different choice o

(u1 ,u2 ,u3).
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like terms I and III, it should approach zero whenr 1*→0.
Term III exhibits qualitatively the same behavior as the s
of terms I and II but its magnitude is smaller than that
(I1II) by an almost constant amount~at r 1* 55, where it is
nearly maximum, the discrepancy is about 20%!. In view of
the difficulties associated with the measurements ofv i , it
can be claimed that Fig. 5 provides reasonable support
Eq. ~18!. Although the high wave number attenuation ofv i
caused by the imperfect spatial resolution of the probe ca
corrected@15#, the corrections required for terms I, II, and I
are much more involved and have not been attempted.
not unlikely that the combination of these errors may caus
systematic error such as that indicated in Fig. 4.

V. CONCLUSIONS

A transport equation has been derived for the sum of
squared vorticity increments with the assumption of hom
geneous and isotropic turbulence. All terms in this equat
have been measured in the self-preserving region of a cy
der wake using a three-component vorticity probe. The m
surements can be regarded as providing reasonable su
for the equation, allowing for the imperfect spatial resoluti
of the probe. For separations greater than about 20h, the
magnitude of all measured terms seems negligible, emp
sizing the small-scale nature of vorticity. Accordingly, th
peak values of the ‘‘generation’’ term III and the visco
term II in Eq. ~18! occur at a separation of about 5h. Specu-
latively, this may be consistent with the presence of inte
vortex filaments with a diameter in the range 4–8h, as has
been noted in several simulations, e.g.,@16#, and a few ex-
periments@17,18#.

Although the Reynolds number is too small for an inert
range to be observed in velocity structure functions, the c
stancy of̂ (dv i* )2& for r 1* *20 indicated in Fig. 1 is likely to
apply at larger values ofRl . This would be consistent with
previous observations that the vorticity spectrum has
power-law behavior at either moderate laboratory values@10#

FIG. 5. Terms I, II, and III in Eq. ~18!. d: Term I
[^du1* (dv i* )2&; —: term II[22]/]r 1* ^(dv i* )2&; s: term III
52^v i*

1v1* ui* 2v i* v1*
1ui*

1&; 1: sum of terms I and II.
f

or

be

is
a

e
-
n
n-
a-
ort

a-

e

l
n-

o

of Rl or large atmospheric values@11# of Rl . The constancy
of ^(dv i* )2& for scales outside the dissipative range certai
contrasts with the expected power-law behavior for the s
ond and higher-order moments ofdu1 ~Fig. 2!.
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APPENDIX: DERIVATION OF EQS. „13… AND „14…

Assuming homogeneity,

]

]xl
^v iv juk&50

and

^v iv j] luk&52^ukv i] lv j&2^ukv j] lv i&. ~A1!

After contracting onk and l , Eq. ~A1! yields

^ukv i]kv j&52^ukv j]kv i&. ~A2!

Using the general form of a fourth-order isotropic tensor,

^uiv j] lvk&5Ad i j dkl1Bd i l d jk1Cd ikd j l .

Settingk5 l and using the solenoidality ofvk ,

3A1B1C50. ~A3!

Settingi 5 l and invertingj andk,

A13B1C50. ~A4!

It follows from Eqs.~A3! and ~A4! that

A5B and C524A.

Consequently,

^uiv j] lvk&2A^d i j dkl1d i l d jk24d ikd j l & ~A5!

and, using Eq.~A1!,

^v iv jd luk&5A~3d ikd j l 22dkld i j 13d jkd i l !. ~A6!

For j 51 andl 51, Eqs.~A5! and ~A6! yield

2^uiv1]1v i&5^v iv1]1ui&,

i.e., Eq.~13!.
Equation~14! follows from Eq.~4!, i.e.,

^v iva]aui&5n^~]av i !
2&

and the isotropic form of̂] jv i] lvk&, viz.,

^] jv i] lvk&5D~d ikd j l 2
1
4 d i j dkl2

1
4 d i l d jk!.



A

J.

tz

y,

, J.

5488 57R. A. ANTONIA, M. OULD-ROUIS, Y. ZHU, AND F. ANSELMET
@1# A. N. Kolmogorov, Dokl. Akad. Nauk SSSR32, 19 ~1941!.
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